Identification of the ER-resident E3 ubiquitin ligase RNF145 as a novel LXR-regulated gene

نویسندگان

  • Emma C L Cook
  • Jessica K Nelson
  • Vincenzo Sorrentino
  • Duco Koenis
  • Martina Moeton
  • Saskia Scheij
  • Roelof Ottenhoff
  • Boris Bleijlevens
  • Anke Loregger
  • Noam Zelcer
چکیده

Cellular cholesterol metabolism is subject to tight regulation to maintain adequate levels of this central lipid molecule. Herein, the sterol-responsive Liver X Receptors (LXRs) play an important role owing to their ability to reduce cellular cholesterol load. In this context, identifying the full set of LXR-regulated genes will contribute to our understanding of their role in cholesterol metabolism. Using global transcriptional analysis we report here the identification of RNF145 as an LXR-regulated target gene. We demonstrate that RNF145 is regulated by LXRs in both human and mouse primary cells and cell lines, and in vivo in mice. Regulation of RNF145 by LXR depends on a functional LXR-element in its proximal promotor. Consistent with LXR-dependent regulation of Rnf145 we show that regulation is lost in macrophages and fibroblasts from Lxrαβ(-/-) mice, and also in vivo in livers of Lxrα(-/-) mice treated with the LXR synthetic ligand T0901317. RNF145 is closely related to RNF139/TRC8, an E3 ligase implicated in control of SREBP processing. However, silencing of RNF145 in HepG2 or HeLa cells does not impair SREBP1/2 processing and sterol-responsive gene expression in these cells. Similar to TRC8, we demonstrate that RNF145 is localized to the ER and that it possesses intrinsic E3 ubiquitin ligase activity. In summary, we report the identification of RNF145 as an ER-resident E3 ubiquitin ligase that is transcriptionally controlled by LXR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of cholesterol biosynthesis through RNF145-dependent ubiquitination of SCAP

Cholesterol homeostasis is maintained through concerted action of the SREBPs and LXRs. Here, we report that RNF145, a previously uncharacterized ER membrane ubiquitin ligase, participates in crosstalk between these critical signaling pathways. RNF145 expression is induced in response to LXR activation and high-cholesterol diet feeding. Transduction of RNF145 into mouse liver inhibits the expres...

متن کامل

The RBCC gene RFP2 (Leu5) encodes a novel transmembrane E3 ubiquitin ligase involved in ERAD.

RFP2, a gene frequently lost in various malignancies, encodes a protein with RING finger, B-box, and coiled-coil domains that belongs to the RBCC/TRIM family of proteins. Here we demonstrate that Rfp2 is an unstable protein with auto-polyubiquitination activity in vivo and in vitro, implying that Rfp2 acts as a RING E3 ubiquitin ligase. Consequently, Rfp2 ubiquitin ligase activity is dependent ...

متن کامل

Human HRD1 is an E3 ubiquitin ligase involved in degradation of proteins from the endoplasmic reticulum.

The ubiquitin system plays an important role in endoplasmic reticulum (ER)-associated degradation of proteins that are misfolded, that fail to associate with their oligomerization partners, or whose levels are metabolically regulated. E3 ubiquitin ligases are key enzymes in the ubiquitination process as they recognize the substrate and facilitate coupling of multiple ubiquitin units to the prot...

متن کامل

Role of Oxidative Stress, ER Stress and Ubiquitin Proteasome System in Neurodegeneration

NDD: Neurodegenerative Disorders; ER: Endoplasmic Reticulum; UPS: Ubiquitin Proteasome System; ROS: Reactive Oxygen Species; AD: Alzheimer’s Disease; PD: Parkinson’s Disease; MS: Multiple Sclerosis; HD: Huntington’s Disease; ALS: Amyotrophic Lateral Sclerosis; PS: Presenilin; APP: Amyloid beta (A4) Precursor Protein; MARK1: Microtubule Affinity-Regulating Kinase 1; SOD-1: Superoxide Dismutase 1...

متن کامل

TMEM129 is a Derlin-1 associated ERAD E3 ligase essential for virus-induced degradation of MHC-I.

The US11 gene product of human cytomegalovirus promotes viral immune evasion by hijacking the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway. US11 initiates dislocation of newly translocated MHC I from the ER to the cytosol for proteasome-mediated degradation. Despite the critical role for ubiquitin in this degradation pathway, the responsible E3 ligase is unknown. In a forwar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017